Extensions 1→N→G→Q→1 with N=C2 and Q=C3×C22.D4

Direct product G=N×Q with N=C2 and Q=C3×C22.D4
dρLabelID
C6×C22.D496C6xC2^2.D4192,1413


Non-split extensions G=N.Q with N=C2 and Q=C3×C22.D4
extensionφ:Q→Aut NdρLabelID
C2.1(C3×C22.D4) = C3×C23.34D4central extension (φ=1)96C2.1(C3xC2^2.D4)192,814
C2.2(C3×C22.D4) = C3×C23.8Q8central extension (φ=1)96C2.2(C3xC2^2.D4)192,818
C2.3(C3×C22.D4) = C3×C23.23D4central extension (φ=1)96C2.3(C3xC2^2.D4)192,819
C2.4(C3×C22.D4) = C3×C23.63C23central extension (φ=1)192C2.4(C3xC2^2.D4)192,820
C2.5(C3×C22.D4) = C3×C24.C22central extension (φ=1)96C2.5(C3xC2^2.D4)192,821
C2.6(C3×C22.D4) = C3×C23.10D4central stem extension (φ=1)96C2.6(C3xC2^2.D4)192,827
C2.7(C3×C22.D4) = C3×C23.11D4central stem extension (φ=1)96C2.7(C3xC2^2.D4)192,830
C2.8(C3×C22.D4) = C3×C23.81C23central stem extension (φ=1)192C2.8(C3xC2^2.D4)192,831
C2.9(C3×C22.D4) = C3×C23.4Q8central stem extension (φ=1)96C2.9(C3xC2^2.D4)192,832
C2.10(C3×C22.D4) = C3×C23.83C23central stem extension (φ=1)192C2.10(C3xC2^2.D4)192,833
C2.11(C3×C22.D4) = C3×C22.D8central stem extension (φ=1)96C2.11(C3xC2^2.D4)192,913
C2.12(C3×C22.D4) = C3×C23.46D4central stem extension (φ=1)96C2.12(C3xC2^2.D4)192,914
C2.13(C3×C22.D4) = C3×C23.19D4central stem extension (φ=1)96C2.13(C3xC2^2.D4)192,915
C2.14(C3×C22.D4) = C3×C23.47D4central stem extension (φ=1)96C2.14(C3xC2^2.D4)192,916
C2.15(C3×C22.D4) = C3×C23.48D4central stem extension (φ=1)96C2.15(C3xC2^2.D4)192,917
C2.16(C3×C22.D4) = C3×C23.20D4central stem extension (φ=1)96C2.16(C3xC2^2.D4)192,918

׿
×
𝔽